Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice.
نویسندگان
چکیده
Hyperphosphorylated isoforms of the microtubule-associated protein tau are the major components of neurofibrillary lesions in Alzheimer's disease (AD). Protein phosphatase (PP) 2A is a major phosphatase implicated in tau dephosphorylation in vitro. Dephosphorylation of tau can be blocked in vivo by okadaic acid, a potent inhibitor of PP2A. Moreover, activity of PP2A is reduced in AD brains. To elucidate the role of PP2A in tau phosphorylation and pathogenesis, we expressed a dominant negative mutant form of the catalytic subunit Calpha of PP2A, L199P, in mice by using a neuron-specific promoter. We obtained mice with high expression levels of Calpha L199P in cortical, hippocampal, and cerebellar neurons. PP2A activity in brain homogenates of transgenic mice was reduced to 66%. Endogenous tau protein was hyperphosphorylated at distinct sites including the AT8 epitope Ser-202/Thr-205, a major AD-associated tau phosphoepitope. AT8-positive tau aggregates accumulated in the soma and dendrites of cortical pyramidal cells and cerebellar Purkinje cells and co-localized with ubiquitin. Our data establish that PP2A plays a crucial role in tau phosphorylation. Our results also show that reduced PP2A activity is associated with altered compartmentalization and ubiquitination of tau, resembling a key pathological finding in AD.
منابع مشابه
Reduced PP2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice
متن کامل
Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer’s disease-like tau pathology
Abnormally hyperphosphorylated tau aggregated as intraneuronal neurofibrillary tangles is one of the two neuropathological hallmarks of Alzheimer's disease (AD). The majority of AD cases are sporadic with numerous environmental, biological and genetic risks factors. Interestingly, insulin dysfunction and hyperglycaemia are both risk factors for sporadic AD. However, how hyperglycaemia and insul...
متن کاملSilencing I2PP2A Rescues Tau Pathologies and Memory Deficits through Rescuing PP2A and Inhibiting GSK-3β Signaling in Human Tau Transgenic Mice
Increase of inhibitor-2 of protein phosphatase-2A [Formula: see text] is associated with protein phosphatase-2A (PP2A) inhibition and tau hyperphosphorylation in Alzheimer's disease (AD). Down-regulating [Formula: see text] attenuated amyloidogenesis and improved the cognitive functions in transgenic mice expressing amyloid precursor protein (tg2576). Here, we found that silencing [Formula: see...
متن کاملAlterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer's disease.
Alzheimer's disease (AD) brains contain neurofibrillary tangles (NFTs) composed of abnormally hyperphosphorylated tau protein. Regional reductions in cerebral glucose metabolism correlating to NFT densities have been reported in AD brains. Assuming that reduced glucose metabolism might cause abnormal tau hyperphosphorylation, we induced in vivo alterations of glucose metabolism in mice by starv...
متن کاملIntranasal insulin prevents anesthesia-induced hyperphosphorylation of tau in 3xTg-AD mice
BACKGROUND It is well documented that elderly individuals are at increased risk of cognitive decline after anesthesia. General anesthesia is believed to be a risk factor for Alzheimer's disease (AD). Recent studies suggest that anesthesia may increase the risk for cognitive decline and AD through promoting abnormal hyperphosphorylation of tau, which is crucial to neurodegeneration seen in AD. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 276 41 شماره
صفحات -
تاریخ انتشار 2001